kdx=kx+C\int kdx = kx + C

xμdx=xμ+1μ+1+C\int x^{\mu}dx = \frac{x^{\mu + 1}}{\mu + 1} + C

dxx=lnx+C\int\frac{dx}{x} = \ln\left\vert x\right\vert + C

dx1+x2=arctanx+C\int\frac{dx}{1 + x^2} = \arctan x + C

dx1x2=arcsinx+C\int\frac{dx}{\sqrt{1 - x^2}} = \arcsin x + C

sinxdx=cosx+C\int\sin xdx = -\cos x + C

cosxdx=sinx+C\int\cos xdx = \sin x + C

tanxdx=lncosx+C\int\tan xdx = -\ln\left\vert \cos x\right\vert + C

cotxdx=lnsinx+C\int\cot xdx = \ln\left\vert\sin x\right\vert + C

secxdx=lnsecx+tanx+C\int\sec xdx = \ln\left\vert\sec x + \tan x\right\vert + C

cscxdx=lncscxcotx+C\int\csc xdx = \ln\left\vert\csc x - \cot x\right\vert + C

sec2xdx=tanx+C\int\sec^2 xdx = \tan x + C

csc2xdx=cotx+C\int\csc^2 xdx = -\cot x + C

secxtanxdx=secx+C\int\sec x\tan xdx = \sec x + C

cscxcotxdx=cscx+C\int\csc x\cot xdx = -\csc x + C

exdx=ex+C\int e^xdx = e^x + C

axdx=axlna+C\int a^xdx = \frac{a^x}{\ln a} + C

dxa2+x2=1aarctanxa+C\int\frac{dx}{a^2 + x^2} = \frac{1}{a}\arctan{\frac{x}{a}} + C

dxa2x2=12alna+xax+C\int\frac{dx}{a^2 - x^2} = \frac{1}{2a}\ln\left\vert\frac{a + x}{a - x}\right\vert + C

dxa2x2=arcsinxa+C\int\frac{dx}{\sqrt{a^2 - x^2}} = \arcsin{\frac{x}{a}} + C

dxx2+a2=ln(x+x2+a2)+C\int\frac{dx}{\sqrt{x^2 + a^2}} = \ln\left(x + \sqrt{x^2 + a^2}\right) + C

dxx2a2=lnx+x2a2+C\int\frac{dx}{\sqrt{x^2 - a^2}} = \ln\left\vert x + \sqrt{x^2 - a^2}\right\vert + C