数量场 
定义 
若对于空间区域 G G G M M M f ( M ) f(M) f ( M ) G G G 数量场 
方向导数 
定义 
设 u = f ( P ) u = f(P) u = f ( P ) Ω \Omega Ω P 0 ∈ Ω P_0 \in \Omega P 0  ∈ Ω P 0 P_0 P 0  l ⃗ \vec{l} l P ≠ P 0 P \neq P_0 P  = P 0  
lim  P → P 0 f ( P ) − f ( P 0 ) ∣ P 0 P ‾ ∣ \lim\limits_{P\to P_0}\frac{f(P) - f(P_0)}{\left\vert\overline{P_0P} \right\vert}
 P → P 0  lim   P 0  P   f ( P ) − f ( P 0  )  
存在,称此极限值为数量场 u = f ( P ) u = f(P) u = f ( P ) P 0 P_0 P 0  l ⃗ \vec{l} l ∂ u ∂ l ⃗ ∣ P 0 \frac{\partial u}{\partial \vec{l}}\big|_{P_0} ∂ l ∂ u   P 0   
计算 
若数量场 u = f ( x , y , z ) u = f(x,y,z) u = f ( x , y , z ) P 0 P_0 P 0  l ⃗ = ( cos  α , cos  β , cos  γ ) \vec{l} = (\cos\alpha, \cos\beta, \cos\gamma) l = ( cos α , cos β , cos γ ) 
∂ u ∂ l ⃗ ∣ P 0 = f x ′ cos  α + f y ′ cos  β + f z ′ cos  γ = grad  u ⋅ l ⃗ \frac{\partial u}{\partial\vec{l}}\big|{P_0}
 = f'_x\cos\alpha + f'_y\cos\beta + f'_z\cos\gamma = \operatorname{grad}u \cdot \vec{l}
 ∂ l ∂ u   P 0  = f x ′  cos α + f y ′  cos β + f z ′  cos γ = grad u ⋅ l 
梯度 
定义 
设 u = f ( P ) u = f(P) u = f ( P ) Ω \Omega Ω P 0 P_0 P 0  Ω \Omega Ω u = f ( P ) u = f(P) u = f ( P ) P 0 P_0 P 0  P 0 P_0 P 0  u = f ( P ) u = f(P) u = f ( P ) P 0 P_0 P 0  梯度 ,记为 grad  u ∣ P 0 \operatorname{grad}u\big|_{P_0} grad u  P 0   
计算 
若 u u u 
grad  u = ( ∂ u ∂ x , ∂ u ∂ y , ∂ u ∂ z ) \operatorname{grad}u = \left(\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial u}{\partial z}\right)
 grad u = ( ∂ x ∂ u  , ∂ y ∂ u  , ∂ z ∂ u  ) 
向量场 
定义 
若对于空间区域 Ω \Omega Ω M M M A ⃗ ( M ) \vec{A}(M) A ( M ) G G G 向量场 。
平均散发量 
设 A ⃗ \vec{A} A Ω \Omega Ω S S S Ω \Omega Ω ∯ S P d y d z + Q d z d x + R d x d y \oiint\limits_S Pdydz + Qdzdx + Rdxdy S ∬   P d y d z + Q d z d x + R d x d y A ⃗ \vec{A} A S S S 总散发量(通量) ,而 1 Ω ∯ S P d y d z + Q d z d x + R d x d y \frac{1}{\Omega} \oiint\limits_S Pdydz + Qdzdx + Rdxdy Ω 1  S ∬   P d y d z + Q d z d x + R d x d y A ⃗ \vec{A} A S S S 平均散发量 。
散度 
定义 
设 A ⃗ \vec{A} A M M M M M M Δ Ω \Delta\Omega ΔΩ Δ S \Delta S Δ S Δ Ω \Delta\Omega ΔΩ lim  Δ Ω → M 1 Δ Ω ∯ Δ S P d y d z + Q d z d x + R d x d y \lim\limits_{\Delta\Omega \to M}\frac{1}{\Delta\Omega}\oiint\limits_{\Delta S} Pdydz + Qdzdx + Rdxdy ΔΩ → M lim  ΔΩ 1  Δ S ∬   P d y d z + Q d z d x + R d x d y Δ S \Delta S Δ S A ⃗ \vec{A} A M M M 散度 ,记为 div  A ⃗ ( M ) = ∇ ⋅ A \operatorname{div}\vec{A}(M) = \nabla\cdot A div A ( M ) = ∇ ⋅ A 
当 div  A → ( M ) > 0 \operatorname{div}\overrightarrow{A}(M) > 0 div A ( M ) > 0 M M M A → \overrightarrow{A} A 正源 
当 div  A → ( M ) < 0 \operatorname{div}\overrightarrow{A}(M) < 0 div A ( M ) < 0 M M M A → \overrightarrow{A} A 负源 
当 div  A → ( M ) = 0 \operatorname{div}\overrightarrow{A}(M) = 0 div A ( M ) = 0 M M M A → \overrightarrow{A} A 
计算 
div  A → ( M 0 ) = ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) ∣ M 0 = ∇ ⋅ A → ( M 0 ) \begin{split}
    \operatorname{div} \overrightarrow{A}(M_0)& = \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right)\Bigg|_{M_0} \\
    & = \nabla\cdot \overrightarrow{A}(M_0)
\end{split}
 div A ( M 0  )  = ( ∂ x ∂ P  + ∂ y ∂ Q  + ∂ z ∂ R  )  M 0   = ∇ ⋅ A ( M 0  )  
环流面密度 
定义 
设 A ⃗ \vec{A} A M M M M M M n ⃗ = { cos  α , cos  β , cos  γ } \vec{n} = \{\cos \alpha, \cos\beta, \cos\gamma\} n = { cos α , cos β , cos γ } M M M Δ S \Delta S Δ S M M M n ⃗ \vec{n} n Δ S \Delta S Δ S Δ C \Delta C Δ C Δ S \Delta S Δ S Δ C \Delta C Δ C lim  Δ S → M 1 Δ S ∮ Δ C P d x + Q d y + R d z \lim\limits_{\Delta S \to M} \frac{1}{\Delta S} \oint\limits_{\Delta C} Pdx + Qdy + Rdz Δ S → M lim  Δ S 1  Δ C ∮  P d x + Q d y + R d z A ⃗ \vec{A} A M M M n ⃗ \vec{n} n 环流面密度 。
计算 
若 P P P Q Q Q R R R 
lim  Δ S → M 1 Δ S ∮ Δ C P   d x + Q   d y + R   d z = ∣ cos  α cos  β cos  γ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ M = rot  A ⃗ ⋅ n ⃗ \lim\limits_{\Delta S \to M}\frac{1}{\Delta S} \oint\limits_{\Delta C} P\mathop{}\!\mathrm{d}x + Q\mathop{}\!\mathrm{d}y + R\mathop{}\!\mathrm{d}z = \begin{vmatrix}
        \cos\alpha & \cos\beta & \cos\gamma \\
        \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
        P & Q & R
    \end{vmatrix}_M = \operatorname{rot} \vec{A} \cdot \vec{n}
 Δ S → M lim  Δ S 1  Δ C ∮  P d x + Q d y + R d z =  cos α ∂ x ∂  P  cos β ∂ y ∂  Q  cos γ ∂ z ∂  R   M  = rot A ⋅ n 
旋度 
定义 
设 A ⃗ \vec{A} A M M M M M M H ⃗ \vec{H} H M M M H ⃗ \vec{H} H A ⃗ \vec{A} A M M M 旋度 ,记为 rot  A ⃗ ( M ) = H ⃗ \operatorname{rot}\vec{A}(M) = \vec{H} rot A ( M ) = H 
计算 
rot  A ⃗ ( M ) = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ M \operatorname{rot}\vec{A}(M) = \begin{vmatrix}
    i & j & k \\
    \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
    P & Q & R
\end{vmatrix}_M
 rot A ( M ) =  i ∂ x ∂  P  j ∂ y ∂  Q  k ∂ z ∂  R   M